

Chapter 6

Thermochemistry:
 Energy Flow and Chemical Change

Thermochemistry: Energy Flow and Chemical Change

6.1 Forms of Energy and Their Interconversion

6.2 Enthalpy: Chemical Change at Constant Pressure

6.3 Calorimetry: Measuring the Heat of a Chemical or Physical Change

6.4 Stoichiometry of Thermochemical Equations
6.5 Hess's Law: Finding ΔH of Any Reaction
6.6 Standard Enthalpies of Reaction ($\Delta H^{\circ}{ }_{\mathrm{rxn}}$)

Transfer and Interconversion of Energy

Thermodynamics is the study of energy and its transformations.

Thermochemistry is a branch of thermodynamics that deals with the heat involved in chemical and physical changes.

When energy is transferred from one object to another, it appears as work and heat.

The System and Its Surroundings

A meaningful study of any transfer of energy requires that we first clearly define both the system and its

surroundings.

System + Surroundings = Universe
The internal energy, \boldsymbol{E}, of a system is the sum of the potential and kinetic energies of all the particles present.

The total energy of the universe remains constant. A change in the energy of the system must be accompanied by an equal and opposite change in the energy of the surroundings.

Figure 6.1 Energy diagrams for the transfer of internal energy (E) between a system and its surroundings.

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}=E_{\text {products }}-E_{\text {reactants }}
$$

Figure 6.2 The two cases where energy is transferred as heat only.

The system absorbs heat
6-7

Figure 6.3A The two cases where energy is transferred as work only.

The system does work on the surroundings.

Figure 6.3B The two cases where energy is transferred as work only.

The system has work done on it by the surroundings.
6-9

Table 6.1 The Sign Conventions* for q, w, and DE

q	+	w	$=$	ΔE
+ (heat absorbed)		+ (work done on)		+ (energy absorbed)
+ (heat absorbed)		- (work done by)		Depends on the sizes of q and w
- (heat released)		+ (work done on)		Depends on the sizes of q and w
- (heat released)		- (work done by)		- (energy released)

*From the perspective of the system.
Which of these are not state functions?
A) volume
B) temperature
C) pressure
D) heat
E) energy
A) internal energy
B) volume
C) work
D) pressure
E) enthalpy

A system which undergoes an adiabatic change (i.e., $q=0$)
A system which undergoes an isothermal change (i.e., constant temperature)

6-10

The Law of Energy Conservation

The first law of Thermodynamics states that the total energy of the universe is constant.

Energy is conserved, and is neither created nor destroyed. Energy is transferred in the form of heat and/or work.

$$
\Delta E_{\text {universe }}=\Delta E_{\text {system }}+\Delta E_{\text {surroundings }}=0
$$

6-11

Units of Energy

The SI unit of energy is the joule (\mathbf{J}).
$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$

The calorie was once defined as the quantity of energy needed to raise the temperature of 1 g of water by $1^{\circ} \mathrm{C}$.
$1 \mathbf{c a l}=4.184 \mathrm{~J}$

The British Thermal Unit (Btu) is often used to rate appliances.
1 Btu is equivalent to 1055 J .

Sample Problem 6.1 Determining the Change in Internal Energy of a System

PROBLEM: When gasoline burns in a car engine, the heat released causes the products CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ to expand, which pushes the pistons outward. Excess heat is removed by the car's radiator. If the expanding gases do 451 J of work on the pistons and the system releases 325 J to the surroundings as heat, calculate the change in energy (ΔE) in J, kJ, and kcal.

PLAN: Define the system and surroundings and assign signs to \mathbf{q} and w correctly. Then $\Delta E=q+w$. The answer can then be converted from J to kJ and to kcal.

6-13

Sample Problem 6.1

SOLUTION:

Heat is given out by a chemical reaction, so it makes sense to define the system as the reactants and products involved. The pistons, the radiator and the rest of the car then comprise the surroundings.

Heat is given out by the system, so $\boldsymbol{q}=\mathbf{- 3 2 5} \mathbf{~ J}$
The gases expand to push the pistons, so the system does work on the surroundings and $\boldsymbol{w}=-451 \mathrm{~J}$

$$
\begin{aligned}
& \Delta E=\boldsymbol{q}+\boldsymbol{w}=-325 \mathrm{~J}+(-451 \mathrm{~J})=-776 \mathrm{~J} \\
& -776+\times \frac{1 \mathrm{~kJ}}{103 \mathrm{~J}}=-\mathbf{0 . 7 7 6 \mathrm { kJ }} \quad-0.776 \mathrm{~kJ} \times \frac{1 \mathrm{kcal}}{4.184 \mathrm{~kJ}}=-\mathbf{0 . 1 8 5 \mathrm { kcal }}
\end{aligned}
$$

Figure 6.4 Two different paths for the energy change of a system.

Even though q and w for the two paths are different, the total ΔE is the same for both.

6-15

Enthalpy:

Chemical Change at Constant Pressure

\[

\]

Figure 6.5 Pressure-volume work.

An expanding gas pushing back the atmosphere does $P V$ work ($w=-P \Delta V$).

6-17

ΔH as a measure of ΔE

- ΔH is the change in heat for a system at constant pressure.

$$
q_{P}=\Delta E+P \Delta V=\Delta H
$$

- $\Delta H \approx \Delta E$
- for reactions that do not involve gases
- for reactions in which the total amount (mol) of gas does not change
- for reactions in which q_{P} is much larger than $P \Delta V$, even if the total mol of gas does change.

Figure 6.6

Enthalpy diagrams for exothermic and endothermic processes.

6-19

Sample Problem 6.2

Drawing Enthalpy Diagrams and Determining the Sign of ΔH

PROBLEM: In each of the following cases, determine the sign of $\Delta \mathrm{H}$, state whether the reaction is exothermic or endothermic, and draw an enthalpy diagram.
(a) $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+285.8 \mathrm{~kJ}$
(b) $40.7 \mathrm{~kJ}+\mathrm{H}_{2} \mathrm{O}(\Lambda) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)$

PLAN: From each equation, note whether heat is a "reactant" or a "product". If heat is taken in as a "reactant", the process is endothermic. If heat is released as a "product", the process is exothermic.

For the enthalpy diagram, the arrow always points from reactants to products. For endothermic reactions, the products are at a higher energy than the reactants, since the reactants take in heat to form the products.

Sample Problem 6.2

SOLUTION: (a) $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\Lambda)+285.8 \mathrm{~kJ}$

Heat is a "product" for this reaction and is therefore given out, so the reaction is exothermic. The reactants are at a higher energy than the products.

EXOTHERMIC

6-21

Sample Problem 6.2

SOLUTION: (b) $40.7 \mathrm{~kJ}+\mathrm{H}_{2} \mathrm{O}(\Omega) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$
Heat is a "reactant" in this reaction and is therefore absorbed, so the reaction is endothermic. The reactants are at a lower energy than the products.

ENDOTHERMIC

Calorimetry

$q=c \times m \times \Delta T$

$$
\begin{aligned}
& q=\text { heat lost or gained } \\
& c=\text { specific heat capacity } \\
& m=\text { mass in } \mathrm{g} \\
& \Delta T=T_{\text {final }}-T_{\text {initial }}
\end{aligned}
$$

The specific heat capacity (c) of a substance is the quantity of heat required to change the temperature of 1 gram of the substance by 1 K . ($\mathrm{J} / \mathrm{g} \cdot \mathrm{K}$)

6-23

Table 6.2 Specific Heat Capacities (c) of Some Elements, Compounds,

and Materials

Substance \begin{tabular}{c}
Specific Heat

Capacity (J/g $\cdot \mathrm{K})$

\quad Substance

Specific Heat

Capacity $(\mathrm{J} / \mathrm{g} \cdot \mathrm{K})^{\star}$
\end{tabular}

Elements

aluminum, Al	0.900	wood	1.76
graphite, C	0.711	cement	0.88
iron, Fe	0.450	glass	0.84
copper, Cu	0.387	granite	0.79
gold, Au	0.129	steel	0.45

Compounds

water, $\mathrm{H}_{2} \mathrm{O}(l)$	4.184
ethyl alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	2.46
ethylene glycol, $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}(l)$	2.42
carbon tetrachloride, $\mathrm{CCl}_{4}(l)$	0.862

${ }^{*}$ At $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$.

Sample Problem 6.3 Finding the Quantity of Heat from a Temperature Change

PROBLEM: A layer of copper welded to the bottom of a skillet weighs 125 g . How much heat is needed to raise the temperature of the copper layer from $25^{\circ} \mathrm{C}$ to $300 .{ }^{\circ} \mathrm{C}$? The specific heat capacity (c) of Cu is $0.387 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$.

PLAN: We know the mass $(125 \mathrm{~g})$ and $c(0.387 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K})$ of Cu and can find ΔT in ${ }^{\circ} \mathrm{C}$, which equals ΔT in K . We can use the equation $q=c \times m \times \Delta T$ to calculate the heat.

SOLUTION: $\quad \Delta T=T_{\text {final }}-T_{\text {initial }}=300 .-25=275^{\circ} \mathrm{C}=275 \mathrm{~K}$
$q=c \times m \times \Delta T=\frac{0.387 \mathrm{~J}}{-g \cdot K} \times 125 \mathrm{~g} \times 275 \mathrm{~K}=1.33 \times 10^{4} \mathrm{~J}$

6-25

Figure 6.7 Coffee-cup calorimeter.

This device measures the heat transferred at constant pressure (q_{p}).

Sample Problem 6.4 Determining the Specific Heat Capacity of a Solid

PROBLEM: A 22.05 g solid is heated in a test-tube to $100.00^{\circ} \mathrm{C}$ and added to 50.00 g of water in a coffee-cup calorimeter. The water temperature changes from $25.10^{\circ} \mathrm{C}$ to $28.49^{\circ} \mathrm{C}$. Find the specific heat capacity of the solid.

PLAN: Since the water and the solid are in contact, heat is transferred from the solid to the water until they reach the same $T_{\text {final }}$. In addition, the heat given out by the solid $\left(-q_{\text {solid }}\right)$ is equal to the heat absorbed by the water ($q_{\text {water }}$).

SOLUTION:

$$
\begin{aligned}
& \Delta T_{\text {water }}=T_{\text {final }}-T_{\text {initial }}=\left(28.49^{\circ} \mathrm{C}-25.10^{\circ} \mathrm{C}\right)=3.39^{\circ} \mathrm{C}=3.39 \mathrm{~K} \\
& \Delta T_{\text {solid }}=T_{\text {final }}-T_{\text {initial }}=\left(28.49^{\circ} \mathrm{C}-100.00^{\circ} \mathrm{C}\right)=-71.51^{\circ} \mathrm{C}=-71.51 \mathrm{~K}
\end{aligned}
$$

6-27

Sample Problem 6.4

$$
\begin{aligned}
c_{\text {solid }} & =\frac{c_{\mathrm{H}_{2} \mathrm{O}} \times \text { mass }_{\mathrm{H}_{2} \mathrm{O}} \times \Delta T_{\mathrm{H}_{2} \mathrm{O}}}{\operatorname{mass}_{\text {solid }} \times \Delta T_{\text {solid }}} \\
& =\frac{4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K} \times 50.00 \mathrm{~g} \times 3.39 \mathrm{~K}}{22.05 \mathrm{~g} \mathrm{\times}(-71.51 \mathrm{~K})}=0.450 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}
\end{aligned}
$$

Sample Problem 6.5

Determining the Enthalpy Change of an Aqueous Reaction

PROBLEM: 50.0 mL of 0.500 M NaOH is placed in a coffee-cup calorimeter at $25.00^{\circ} \mathrm{C}$ and 25.0 mL of 0.500 M HCl is carefully added, also at $25.00^{\circ} \mathrm{C}$. After stirring, the final temperature is $27.21^{\circ} \mathrm{C}$. Calculate $q_{\text {soln }}$ (in J) and the change in enthalpy, ΔH, (in $\mathrm{kJ} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}$ formed).

Assume that the total volume is the sum of the individual volumes, that $d=1.00 \mathrm{~g} / \mathrm{mL}$ and $c=4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$

PLAN: Heat flows from the reaction (the system) to its surroundings (the solution). Since $-q_{\mathrm{rxn}}=q_{\mathrm{soln}}$, we can find the heat of the reaction by calculating the heat absorbed by the solution.

6-29

Sample Problem 6.5

SOLUTION:

(a) To find $q_{\text {soln }}$:

Total mass (g) of the solution $=(25.0 \mathrm{~mL}+50.0 \mathrm{~mL}) \times 1.00 \mathrm{~g} / \mathrm{mL}=75.0 \mathrm{~g}$

$$
\begin{aligned}
& \Delta T_{\text {soln }}=27.21^{\circ} \mathrm{C}-25.00^{\circ} \mathrm{C}=2.21^{\circ} \mathrm{C}=2.21 \mathrm{~K} \\
& q_{\text {soln }}=c_{\text {soln }} \times \text { mass }_{\text {soln }} \times \Delta T_{\text {soln }}=(4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})(75.0 \mathrm{~g})(2.21 \mathrm{~K})=693 \mathrm{~J}
\end{aligned}
$$

(b) To find ΔH_{rxn} we first need a balanced equation:

$$
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda
$$

Sample Problem 6.5

For HCl :
$25.0 \mathrm{~mL} \mathrm{HCl} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{~mL}} \times \frac{0.500 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{HCl}}=0.0125 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

For NaOH :
$50.0 \mathrm{~mL} \mathrm{NaOH} \times \frac{1 \mathrm{~L}}{10^{3} \mathrm{~mL}} \times \frac{0.500 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{NaOH}}=0.0250 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

HCl is limiting, and the amount of $\mathrm{H}_{2} \mathrm{O}$ formed is 0.0125 mol .

$$
\Delta H_{\mathrm{rxn}}=\frac{q_{\mathrm{rxn}}}{\mathrm{~mol} \mathrm{H}} \mathrm{H}_{2} \mathrm{O}=\frac{-693 \mathrm{~J}}{0.0125 \mathrm{~mol}} \times \frac{1 \mathrm{~kJ}}{10^{3} \mathrm{~J}}=-55.4 \mathrm{~kJ} / \mathbf{m o l ~ H}_{2} \mathrm{O}
$$

6-31

Figure $6.8 \quad$ A bomb calorimeter.

This device measures the heat released at constant volume $\left(q_{v}\right)$.

Sample Problem 6.6 Calculating the Heat of a Combustion Reaction

PROBLEM: A manufacturer claims that its new dietetic dessert has "fewer than 10 Calories per serving." To test the claim, a chemist at the Department of Consumer Affairs places one serving in a bomb calorimeter and burns it in O_{2}. The initial temperature is $21.862^{\circ} \mathrm{C}$ and the temperature rises to $26.799^{\circ} \mathrm{C}$. If the heat capacity of the calorimeter is $8.151 \mathrm{~kJ} / \mathrm{K}$, is the manufacturer's claim correct?

PLAN: When the dessert (system) burns, the heat released is absorbed by the calorimeter:
$-q_{\text {system }}=q_{\text {calorimeter }}$
To verify the energy provided by the dessert, we calculate $q_{\text {calorimeter }}$

6-33

Sample Problem 6.6

SOLUTION:

$$
\begin{aligned}
& \Delta T_{\text {calorimeter }}=T_{\text {final }}-T_{\text {initial }} \\
&=26.799^{\circ} \mathrm{C}-21.862^{\circ} \mathrm{C}=4.937^{\circ} \mathrm{C}=4.937 \mathrm{~K} \\
& q_{\text {calorimeter }}=\text { heat capacity } \times \Delta T=8.151 \mathrm{~kJ} / \mathrm{K} \times 4.937 \mathrm{~K}=40.24 \mathrm{~kJ} \\
& 40.24 \mathrm{~kJ} \times \frac{\mathrm{kcal}}{4.184 \mathrm{~kJ}}=9.63 \text { kcal or Calories }
\end{aligned}
$$

The manufacturer's claim is true, since the heat produced is less than 10 Calories.

Stoichiometry of Thermochemical Equations

- A thermochemical equation is a balanced equation that includes ΔH_{rxn}.
- The sign of ΔH indicates whether the reaction is exothermic or endothermic.
- The magnitude of ΔH is proportional to the amount of substance.
- The value of ΔH can be used in a calculation in the same way as a mole ratio.

Figure 6.11
The relationship between amount (mol) of substance and the energy (kJ) transferred as heat during a reaction.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. molar ratio
 of substance B

Sample Problem 6.7 Using the Enthalpy Change of a Reaction

(ΔH) to Find Amounts of Substance
PROBLEM: The major source of aluminum in the world is bauxite (mostly aluminum oxide). Its thermal decomposition can be represented by the equation

$$
\mathrm{Al}_{2} \mathrm{O}_{3}(s) \rightarrow 2 \mathrm{Al}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \Delta H_{\mathrm{rxn}}=1676 \mathrm{~kJ}
$$

If aluminum is produced this way, how many grams of aluminum can form when $1.000 \times 10^{3} \mathrm{~kJ}$ of heat is transferred?

PLAN: From the balanced equation and ΔH, we see that 2 mol of Al is formed when 1676 kJ of heat is absorbed.

heat (kJ)

$1676 \mathrm{~kJ}=2 \mathrm{~mol}$ AI
mol of AI \quad mass (g) of $\mathbf{A I}$

6-37
multiply by \mathcal{M}

Sample Problem 6.7

SOLUTION:

$$
1.000 \times 10^{3} \mathrm{~kJ} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{1676 \mathrm{~kJ}} \times \frac{26.98 \mathrm{~g} \mathrm{AI}}{1 \mathrm{~mol} \mathrm{Al}}=\mathbf{3 2 . 2 0 \mathrm { g } \mathrm { AI }}
$$

Hess' Law

Hess's law states that the enthalpy change of an overall process is the sum of the enthalpy changes of its individual steps.

$$
\Delta H_{\text {overall }}=\Delta H_{1}+\Delta H_{2}+\ldots \ldots \ldots .+\Delta H_{n}
$$

ΔH for an overall reaction can be calculated if the ΔH values for the individual steps are known.

6-39

Calculating ΔH for an overall process

- Identify the target equation, the step whose ΔH is unknown.
- Note the amount of each reactant and product.
- Manipulate each equation with known ΔH values so that the target amount of each substance is on the correct side of the equation.
- Change the sign of ΔH when you reverse an equation.
- Multiply amount (mol) and ΔH by the same factor.
- Add the manipulated equations and their resulting ΔH values to get the target equation and its ΔH.
- All substances except those in the target equation must cancel.

Sample Problem 6.8

Using Hess's Law to Calculate an Unknown $\Delta \boldsymbol{H}$

PROBLEM: Two gaseous pollutants that form in auto exhausts are CO and NO. An environmental chemist is studying ways to convert them to less harmful gases through the following reaction:

$$
\mathrm{CO}(g)+\mathrm{NO}(g) \longrightarrow \mathrm{CO}_{2}(g)+1 / 2 \mathrm{~N}_{2}(g) \Delta H=?
$$

Given the following information, calculate the unknown ΔH :
Equation A: $\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \Delta H_{\mathrm{A}}=-283.0 \mathrm{~kJ}$
Equation $\mathrm{B}: \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}(g) \Delta H_{\mathrm{B}}=180.6 \mathrm{~kJ}$
PLAN: Manipulate Equations A and/or B and their ΔH values to get to the target equation and its ΔH. All substances except those in the target equation must cancel.

6-41

Sample Problem 6.8

SOLUTION:

Multiply Equation B by $1 / 2$ and reverse it:

$$
\mathrm{NO}(g) \longrightarrow 1 / 2 \mathrm{~N}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) ; \Delta H=-90.3 \mathrm{~kJ}
$$

Add the manipulated equations together:
Equation A: $\mathrm{CO}(g)+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g) \quad \Delta H=-283.0 \mathrm{~kJ}$
$1 / 2$ Equation B: $\quad \mathrm{NO}(g) \quad \rightarrow 1 / 2 \mathrm{~N}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \quad \Delta H=-90.3 \mathrm{~kJ}$
(reversed)

$$
\mathrm{CO}(g)+\mathrm{NO}(g) \longrightarrow \mathrm{CO}_{2}(g)+1 / 2 \mathrm{~N}_{2}(g)
$$

$$
\Delta \boldsymbol{H}_{\mathrm{rxn}}=-373.3 \mathrm{~kJ}
$$

Table 6.3 Selected Standard Enthalpies of Formation at $25^{\circ} \mathrm{C}$ (298K)

Formula $\Delta \boldsymbol{H}$	$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$	Formula	$\Delta H^{\circ} \mathrm{f}$ (kJ/mol)	Formula $\Delta H^{\text {P }}$	$\Delta H_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$
Calcium		$\mathrm{Cl}_{2}(\mathrm{~g})$		Silver	
$\mathrm{Ca}(\mathrm{s})$	0		-92.3	$\mathrm{Ag}(\mathrm{s})$	0
$\mathrm{CaO}(\mathrm{s})$	-635.1	$\mathrm{HCl}(\mathrm{g})$		$\mathrm{AgCl}(\mathrm{s})$	(s) -127.0
$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1206.9	Hydrogen			
Carbon		$\mathrm{H}(\mathrm{g})$	218	Sodium	
C(graphite)	e) 0	$\mathrm{H}_{2}(\mathrm{~g})$	0	Na (s)	0
C(diamond)	d) 1.9	Nitrogen		$\mathrm{Na}(\mathrm{g})$) 107.8
$\mathrm{CO}(\mathrm{g})$	-110.5	$\mathrm{N}_{2}(\mathrm{~g})$	0	$\mathrm{NaCl}(\mathrm{s})$	(s) -411.1
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-45.9	Sulfur	
$\mathrm{CH}_{4}(\mathrm{~g})$	-74.9	$\mathrm{NO}(\mathrm{g})$	90.3	S_{8} (rhombic)	mbic) 0
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{n})$	-238.6	Oxygen		S_{8} (monoc)	noclinic) 0.3
$\mathrm{HCN}(\mathrm{g})$	135 87.9	$\mathrm{O}_{2}(g)$	0	$\mathrm{SO}_{2}(\mathrm{~g})$	() -296.8
$\mathrm{CS}_{\mathrm{s}}(\mathrm{O}$	87.9	$\mathrm{O}_{3}(\mathrm{~g})$	143	$\mathrm{SO}_{3}(\mathrm{~g})$	(-396.0
Chlorine		$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8		
$\mathrm{Cl}(\mathrm{g})$	121.0	$\mathrm{H}_{2} \mathrm{O}($)	-285.8		

Sample Problem 6.9 Writing Formation Equations

PROBLEM: Write balanced equations for the formation of 1 mol of the following compounds from their elements in their standard states and include $\Delta H^{\circ}{ }_{f}$.
(a) Silver chloride, AgCl , a solid at standard conditions.
(b) Calcium carbonate, CaCO_{3}, a solid at standard conditions.
(c) Hydrogen cyanide, HCN, a gas at standard conditions.

PLAN: Write the elements as reactants and 1 mol of the compound as the product formed. Make sure all substances are in their standard states. Balance the equations and find the value of ΔH° in Table 6.3 or Appendix B.

Sample Problem 6.9

SOLUTION:

(a) Silver chloride, AgCl , a solid at standard conditions.

$$
\mathrm{Ag}(s)+1 / 2 \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{AgCl}(s) \quad \Delta H_{\mathrm{f}}=-127.0 \mathrm{~kJ}
$$

(b) Calcium carbonate, CaCO_{3}, a solid at standard conditions.

$$
\mathrm{Ca}(\mathrm{~s})+\mathrm{C}(\text { graphite })+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s}) \quad \Delta H_{\mathrm{f}}^{\circ}=-1206.9 \mathrm{~kJ}
$$

(c) Hydrogen cyanide, HCN, a gas at standard conditions.

$$
1 / 2 \mathrm{H}_{2}(g)+\mathrm{C}(\text { graphite })+1 / 2 \mathrm{~N}_{2}(g) \longrightarrow \mathrm{HCN}(g) \quad \Delta H_{\mathrm{f}}=135 \mathrm{~kJ}
$$

6-45

Figure 6.10
The two-step process for determining $\Delta H_{r x n}$ from ΔH_{f}° values.

Sample Problem 6.10 Calculating $\Delta H^{\circ}{ }_{\mathrm{rxn}}$ from ΔH_{f} Values

PROBLEM: Nitric acid, whose worldwide annual production is about 8 billion kilograms, is used to make many products, including fertilizer, dyes, and explosives. The first step in the industrial production process is the oxidation of ammonia:
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$
Calculate $\Delta H^{\circ}{ }_{\text {rxn }}$ from ΔH° values.
PLAN: Use the ΔH° values from Table 6.3 or Appendix B and apply the equation
$\Delta H_{\mathrm{rxn}}=\Sigma m \Delta H_{\mathrm{f}}^{\circ}$ (products) $-\Sigma n \Delta H_{\mathrm{f}}^{\circ}$ (reactants)

6-47

Sample Problem 6.10

SOLUTION:

$$
\begin{gathered}
\Delta H_{\mathrm{rxn}}=\Sigma m \Delta H_{\mathrm{f}}^{\circ}(\text { products })-\Sigma n \Delta H_{\mathrm{f}}^{\circ}(\text { reactants }) \\
\Delta H_{\mathrm{rxn}}=\left[4 \left(\Delta H_{\mathrm{f}}^{\mathrm{f}} \text { of } \mathrm{NO}(g)+6\left(\Delta H_{\mathrm{f}}^{\circ} \text { of } \mathrm{H}_{2} \mathrm{O}(g)\right]\right.\right. \\
-\left[4 \left(\Delta H \text { of } \mathrm{NH}_{3}(g)+5\left(\Delta H \text { of } \mathrm{O}_{2}(g)\right]\right.\right. \\
=(4 \mathrm{~mol})(90.3 \mathrm{~kJ} / \mathrm{mol})+(6 \mathrm{~mol})(-241.8 \mathrm{~kJ} / \mathrm{mol})- \\
{[(4 \mathrm{~mol})(-45.9 \mathrm{~kJ} / \mathrm{mol})+(5 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})]} \\
=-906 \mathrm{~kJ}
\end{gathered}
$$

$$
\Delta H_{\mathrm{rxn}}=-906 \mathrm{~kJ}
$$

Figure 6.11 The trapping of heat by the atmosphere.
Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6-49

